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1. Summary. Let M(x) denote the expected value at level x of the response 
to a certain experiment. M1(x) is assumed to be a monotone function of x but is 
unknown to the experimenter, and it is desired to find the solution x 0 of the 
equation 114(x) = a, where a is a given constant. We give a method for making 
successive experiments a.t levels x1 , x2, in suieh a, way that x,, will tend to 0 in 
probability. 

2. Introduction. Let 31(x) be a. given function and a a given constant such 
that the equation 

(1) M3(x)- a 

has a unique root x = 0. There are many methods for determining the value of 6 
by successive approximation. With any such method we begin by choosing one or 
more values xl, - - -, x, more or less arbitrarily, and then successively obtain new 
values xn, as certain functions of the previously obtained xl, - *, x,_1 , the values 
JVll(x1), * M(x-1), and possibly those of the derivatives M'(x1), - * ,M(xn]) 
etc. If 

(2) lim xn 0, 

irrespective of the arbitrary initial values xi 7 , x , then the method is 
effective for the particular function M(x) and value a. The speed of the con- 
vergence in (2) and the ease with which the x,n can be computed determine the 
practical utility of the method. 

We consider a stochastic generalization of the above problem in which the 
nature of the function M(x) is unknown to the experimenter. Instead, we suppose 
that to each value x corresponds a random variabJe Y = Y(x) with distribution 
function Pr[Y(x) < y]- H(y I x), such that 

00 

(3) M(x) yLdH(yIx) 

is the expected value of Y for the given x. Neither the exact nature of H(y i x) 
nor that of 3I(x) is known to the experimenter, but it is assumed that equation (1) 
has a unique root 0, and it is desired to estimate 0 by making successive observa- 
tions on Y at levels x1 , x2I ... determined sequentially in accordance with some 
definite experimental procedure. If (2) holds in probability irrespective of any 
arbitrary initial values xi , * a *, x,, we shall, in conformity with usual statistical 
terminology, call the proceduire consistent for the given H1(y I x) and value a. 
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STOCHASTIC APPROXIMATION 401 

In what follows we shall give a particular procedure for estimating 0 which is 
consistent under certain restrictions on the nature of H(y I x). These restrictions 
are severe, and could no doubt be lightened considerably, but they are often 
satisfied in practice, as will be seen in Section 4. No claim is made that the 
procedure to be described has any optimum properties (i.e. that it is "efficient") 
but the results indicate at least that the subject of stochastic approximation is 
likely to be useful and is worthy of further study. 

3. Convergence theorems. We suppose henceforth that H(y I x) is, for every x, 
a distribution function in y, and that there exists a positive constant C such that 

rc 

(4) Pr [I Y(x) i <C]- dH(y|x) - 1 forallx. 
c 

It follows in particular that for every x the expected value M(x) defined by (3) 
exists and is finite. We suppose, moreover, that there exist finite constants a, 
0 succh that 

(5) M(x) < a for x < 0, M(x) > a for x > 0. 

Whether M(O) = a is, for the moment, immaterial. 
Let {an} be a fixed sequence of positive constants such that 

00 

(6) 0 < EZa' A < oo. 

We define a (nonstationary) Markov chain {x.} by taking xl to be an arbitrary 
constant and defining 

(7) -n+1- Xn = an(a -Yn), 

where yn is a random variable such that 

(8) Pr[Yn < Y I Xnl - H(y I xn). 

Let 

(9) bn = E(x, 0)2 . 

We shall find conditions under which 

(10) lim bn = 0 
n b- oo 

no matter what the initial value xi . As is well known, (10) implies the convergence 
in probability of x. to 0. 

From (7) we have 

bn+l = E(Xn41 - 0)2 =EE)2 1 x]] 

(11) = E[f {(X. - 0) an(y - )}2dH(yx)] 

- aE 
-b. + a 2 E (y Cf) 

2 
dH(y1 xJ - 2anE[(xn, 0)(M(x,) ] 
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402 HERBERT ROBBINS AND SUTTON MONRO 

Setting 

(12) dn - E[(Xn - 0)(M(Xn) - a)], 

(13) eCn - E[f(y - a) dI(y xn)] 

wve carn write 

(14) bn+l bn = anen- 2an dn. 

Note that from (5) 

dn ? 0, 

while from (4) 

0 <en < [C + ja]2< 

Together with (6) this implies that the positive-term series 2fa2er converges. 
Summing (14) we obtain 

(15) bn+1 =bi + a2 ej- 2 Zaj dj. 
j=1 j-1 

Since br&+i ? 0 it follows that 

(16) aj dj < d b+ a2 en < . 
j=1 

Hence the positive-term series 
00 

(17) an dn 

converges. It follows from (15) that 
00 00 

(18) lin b,, = bi + an en - 2 an dn =b 
7 ?? ~ ~ ~~1 1 

exists; b > 0. 
Now suppose t;hat there exists a sequence {k,} of nonniegative conistants 

such that 
co 

(19) (in 2 kn 1b, an kn - ?? . 

Fioni the first patl of (19) anId the coinvergenice of (17) it follows that 
00 

(20) Zank/Onbn < 0o. 

'IrOin (2(0) aIi(m the secoild part of (19) it follows that for anly E > 0 there must 
exist infinitely many values n such that bn < c. Since we already know that 
b -, lim.-, b,, exists, it follows that b = 0. Thus wve have proved 
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STOCHASTIC APPROXIMATION 403 

LEMMA 1. If a sequence fknd of nonnegative constants exists satisfying (19) 
then b = 0. 

Let 

(21) A =x- + [C + I a! ](al + a2 + + a,,-); 

then from (4) and (7) it follows that 

(22) PrIl x, - 0 1 ? An] = 1. 
Now set 

(23) = inf [M(x) a] for 0 < Ia - 01 <Af. 

From (5) it follows that lE. ? 0. Moreover, denoting by Pn(x) the probability 
distribution of x",,, we have 

dn =/ A (x - 0) (M (x) - a) d1P, (x) 
(24) 

2 | hn 

ij* 

- 

0 

12 dPn 
(x) = 

knb3. It follows that the particular sequence {7I defined by (23) satisfies the first 
part of (19). 

In order to establish the second part of (19) we shall make the following 
assuimptions: 

(25) K 

An 

for some constant K > 0 and sufficiently large , and 

ao 
(26) 

E an 

It follows from (26) that 

(27) Ean =r 

and heniee for sufficiently large n 

(28) 2[C + I a I ](a, + + a" ,) An 

'rhis implies by (25) that for sufficiently large tl 

(29) a,,3 a. > ,, 
Aa 2[GC + la](a, + + an-1)' 

and thC seconld part of (19) follows from (29) a.ndti (26). This proves 
J,EMMA, 2. If (25) and (26) hold then b = 0. 
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404 HERBERT ROBBINS AND SUTTON MONRO 

The hypotheses (6) and (26) concerning { a} are satisfied by the sequence 
an = 1/n, since 

co2 _ _ _ _ _ _ _ _ 

'n2= 6 E n-2L ( +2+ .. + i-+ in 6' 
___n 2 

More generally, any sequence {an} such that there exist two positive constants 
c', c" for which 

(30) c < an n ~n 

will satisfy (6) and (26). We shall call any sequence {a.) which satisfies (6) 
and (26), whether or not it is of the form (30), a sequence of type 1/n. 

If {an) is a sequence of type 1/n it is easy to find functions M(x) which satisfy 
(5) and (25). Suppose, for example, that M(x) satisfies the following strength- 
ened form of (5): for some 6 > 0, 

(5') M(x) < a-a for x < 0, M(x) >a + 6 for x > 0. 

Then for 0 < I x - 0 I ? An we have 

(31) m(x) - -A > 
x -0 Anh 

so that 

(32) En 
An 

which is (25) with K = 6. From Lemma 2 we conclude 
THEOREM 1. If { an } is of type 1/n, if (4) holds, and if M(x) satisfies (5') then 

b = 0. 
A more interesting case occurs when M(x) satisfies the following conditions: 

(33) M(x) is nondecreasing, 

(34) M(0) = a, 

(35) M'(0) > 0. 

We shall prove that (25) holds in this case also. From (34) it follows that 

(36) M(x) - a = (x - O)[M'(0) + e( - 0)1, 

where E(t) is a function such that 

(37) lim e(t) = 0. 

Hence there exists a constant 6 > 0 such that 

(38) e(t) > - M'(0) for It I < , 

This content downloaded from 166.111.65.85 on Wed, 12 Feb 2014 08:54:18 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


STOCHASTIC APPROXIMATION 405 

so that 

111(x) -a > I M'(0) > O for Ix-? l?< 

Hence, for 6 -- 8 < x < 6 + An, since M(x) is nondecreasing, 

(40) M (x) - a >1MO1(6+) - a> aM'(6) 
x - 0 >- A, aA 

while for 6 - A, x < 0 6, 

(41MM(x) -a 6m- _ a(- ) 6> M'(6) (41) > - 0 --> ~~ A 
x - 6 2A x - 

Thus, since we may assuime without loss of generality that b/An < 1, 

(42) M1(x) - a > -A-in) foi 0 < I x - O An, x -6 - 2An 

so that (25) holds with K = 8M'(0)/2 > 0. This proves 
THEOREM 2. If {an} is of type 1/n, if (4) holds, and if M(x) satisfies (33), (34), 

and (35), then b = 0. 
It is fairly obvious that condition (4) could be considerably weakened without 

affecting the validity of Theorems 1 and 2. A reasonable substitute for (4) 
would be the condition 

r0 
(4') M(x) ?C2 f (y M(.X))2dH(yIx) 

< 2 < % forallx. 

We do not know whether Theorems I and 2 hold with (4) replaced by (4'). 
Likewise, the Ihypotheses (33), (34), and (35) of Theorem 2 could be weakened 
somewhat, perhaps being replaced by 

(5") lf1(x) < a for x < 0, M (x) > a for x > 0. 

4. Estimation of a qualtile using response, nonresponse data. Let F(x) be 
an unknown distribution function such that 

(43) F (0) = a (O < a < 1) F'(0) > 0, 

atnd let {zn} be a sequenlce of independent random variables each with the 
distribution funietion Pr[zn < x] = F(x). On the basis of {zn} we wish to estimate 
0. However, as sometimes happens in p'actice (bioassay, sensitivity data), we 
are not allowed to know the values of zn themselves. Instead, we are free to 
prescrihe for each n a value x. and are then given only the values {y,'} where 

(1 if zn < Xn ("response"), 

(44) yn= lo otherwise ("nonresponrse"). 

How shall we choose the values {xn} and how shall we use the sequence YJn 
to estima.te 6? 
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406 HERBERT ROBBINS AND SUTTON MTONRO 

Let uls proceed as follows. Choose xi as our best guess of the value 0 and 
let {an} be any sequence of constants of type 1/n. Then choose valiues X2 , X3 K * 

sequentially according to the rule 

(45) Xnui- Xn = an(a yn). 

Since 

(46) Pr[Yn = 1 I xn] = F(xn), Pr[y, = 0 | x,] = 1 - F(Xn), 

it followvs that (4) holds and that 

(47) M (x) = F(x). 

All the hypotheses of Trleorem 4 are satisfied, so that 

(48) lim xn = 
i noo,0 

ni quadratic mean anld hence in probability. In other words, {xj} is a consistent 
estimator of 0. 

The efficiency of {x4j will depend on xi and on the choice of the sequence 
{a,}, as well as on the nature of F(x). For any given F(x) there doubtless exist 
more efficient estimators of 0 than any of the type {x," } defined by (45), but 
{.X,n} has the advantage of being distribution-free. 

In some applications it is more convenient to make a group of r observations 
at the same level before proceeding to the next level. The nth group of observa- 
tions will then be 

(49) Y(,z-l),r+l *** Ynr 

using the notation (44). ILet n = arithmetic mean of the values (49). Then 
setting 

(50) Xni -Xn = an(a - gn), 

we have MI(x) = '(x) as before, and hence (18) continues to hold. 
The possibility of using a convergent sequential process in this problei was 

first mentioned by T. W. Anderson, P. J. McCarthy, and J. W. Tukey in the 
Naval Ordnance Report No. 65-46(1946), p. 99. 

5. A more general regression problem. It is clear that the problem of Section 4 
is a special case of a more general regression problem. In fact, using the notation 
of Section 2, consider any random variable Y which is associated with an observ- 
able value x in such a way that the conditional distribution function of Y foi 
fixed x is H(y I x); the function M(x) is then the regression of Y on x. 

The usual regression analysis assumes that M(x) is of known formi with 
unknown parameters, scay 

(51) .ll(x) = i00 + #lx, 
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STOCHASTIC APPROXIMATION 407 

and deals with the estimation of one or both of the parameters f,B on the basis of 
observations Yi, Y2, *... * Yn corresponding to observed values xl, x2, - * *, x . 
The method of least squares, for example, yields the estimators bi which minimize 
the expression 

(52) Z (yi - [ + #1Xi])2. 
i=1 

Instead of trying to estimate the parameters pi of M(x) under the assumption 
that M(x) is a linear function of x, we may try to estimate the value 0 such that 
M(8) = a, where a is given, without any assumption about the form of M(x). 
If we assume only that H(y I x) satisfies the hypotheses of Theorem 2 then the 
sequence of estimators {xn} of 0 defined by (7) will at least be consistent. This 
indicates that a distribution-free sequential system of making observations, 
such as that given by (7), is worth investigating from the practical point of 
view in regression problems. 

One of us is investigating the properties of this and other sequential designs 
as a graduate student; the senior author is responsible for the convergence 
proof in Section 3. 
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